Translate

2020年11月24日火曜日

OpenAI Gym 環境クラスを独自実装してみる

強化学習を行う場合、Stable BaselinesやTensorFlowなどのAPIではOpenAI Gym準拠の環境クラスを使用することができる。

ので、個別案件に対応する独自環境クラスを作りたい..

ということで実際に作ってみた。

独自環境クラスを実装するには、まずOpenAI Gymが提供する gym.Env という基底クラスを継承し、以下の表にあるプロパティ(インスタンス変数、つまりself.~)やメソッドをオーバライドすればよい。



 

 

サンプルとして強化学習AIでじゃんけん対戦を実現する。
以下、作ったサンプルコードのリポジトリリンク

[GitHub] coolerking/rock-paper-scissors
https://github.com/coolerking/rock-paper-scissors


実装してみて思ったのが、報酬関数の仕様は機能要件上には登場しないので、(業務用件によっては)設計者が発明しなくてはならないこと。

そして、状態と観測の違いが理解できない人(意外と多い)は、もう「状態=観測」で割り切って設計すること。

軽く触った程度なので、もうすこしほってみないとアレだけど..とりあえず現時点での感想です。


o1-previewにナップサック問題を解かせてみた

Azure環境上にあるo1-previewを使って、以下のナップサック問題を解かせてみました。   ナップサック問題とは、ナップサックにものを入れるときどれを何個入れればいいかを計算する問題です。数学では数理最適化手法を使う際の例でよく出てきます。 Azure OpenAI Se...